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1 University of Catmia, Department of Mathematics, Vide Docia 6, 95125 Catania. Italy 
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Abstract. A thermodynamic model of second sound propagation in rigid solids like 
dielectric crystals is proposed: this is achieved within the fnmework of extended irreversible 
thermodynamics. The independent variables are the temperature, the heat flux vector plus a 
supplemenmy variable that is identified as the flux of the heat flux; to include non-local effects, 
the constitutive equations are assumed to depend on the gradients of the tempemture and the 
heat flux vector. After establishing the evolution equations governing the behaviour of the hasic 
variables in the course of space and time, the entropy production is calculated and a generalized 
Gibbs equation is derived. The present model is shown to be rather general as it encompasses 
the particular models of Catnneo and Guyer-Knrmhansl. Onsagdike  reciprocal reladons are 
also displayed and discussed. Working within the lowest-order approximation, a general wave 
equation for the temperature is derived. This relation is a third-order hyperbolic differential 
equation with respect to time, allowing for propagation of waves at finite velocity. A dispersion 
relation between the wavevector and the frequency is established and the corresponding phase 
velocity is calculated. 

1. Introduction 

The study of second sound in crystals has received growing interest during the past few 
year [l-31. Moreover, it is known that second sound cannot be interpreted within the 
scheme of classical irreversible thermodynamics proposed by Onsager [4], Prigogine [5], 
De Groot and Mazur [6] and Woods [7] among others. Indeed this formalism predicts 
that heat conduction is governed by the Fourier law relating the heat flux linearly to the 
temperature gradient, while second sound requires a more involved relation between heat 
flux and temperature gradient. Several extension of Fourier’s law have been proposed 
recently (see [l] for a review). In particular it was observed that generalized.Fourier laws 
emerge naturally from a new thermodynamic formalism, referred to as extended irreversible 
thermodynamics (Em) [8-10]. Our purpose is to propose a phenomenological description of 
second sound in dielectric crystals based on Err. Earlier papers using either EIT [Z, 3,s-101, 
internal variables theories [11-13] or rational thermodynamics [14,15] have been proposed. 
The new feature of the present work is that we incorporate spatial inhomogeneities into 
the framework of EIT. Only lower-order spatial inhomogeneities (weak non-locality) will be 
investigated in order to keep the model as simple as possible; by weak locality is meant the 
property that the governing constitutive equations involve only first-order spatial derivatives 
of the independent variables, higher-order derivatives not being accounted for. 

5 Also at Louvain University. Department of Mechanics, B-1348 Louvain-le-Neuve. Belgium. 
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In section 2, the relevant evolution and constitutive equations are established. 
Restrictions on the form of these equations are placed by the second law of thermodynamics 
and the requirement that entropy is maximum at equilibrium (section 3). Comparison with 
earlier models [16-18] is made: it is shown that the present model contains as particular 
cases the Fourier, Cattaneo, and Guyer and Krumhansl relations. Onsager’s relations are 
displayed in section 4. After elimination of the fluxes one is left with a partial differential 
equation for the temperature only. This equation is hyperbolic, in contrast with Guyer and 
Krumhansl’s analogous expression: comparison with results obtained within the framework 
of rational thermodynamics [ 141 is also discussed (section 5). Wave propagation properties 
in dielectric crystals at low temperature are established in section 6 while final conclusions 
are drawn in section 7. 

The basic hypothesis underlying EIT is to extend the space of the classical variables (like 
temperature, velocity, pressure, mass, concentration) by including supplementary variables 
taking the form of fluxes, like the heat flux, the flux diffusion, the flux of momentum 
and even higher-order fluxes. The main consequence is to replace the classical constitutive 
steady equations of Fourier, Fick, Newton,. . . by unsteady evolution equations involving the 
first-order time derivative of the variables. To be explicit the Fourier law of heat conduction: 

q = - l V T  (1) 

is, in EIT, generalized as 

rq + q = -1VT. (2 )  

The latter relation is known as the Cattaneo equation [16]; in (1) and (2), q designates the 
heat flux vector, 1 the heat conductivity, T the absolute temperature, r the relaxation time, 
an upper dot means (partial) derivation with respect to time and V is the nabla operator 
with components a,, ay, a, in Cartesian coordinates. To obtain Cattaneo’s relation from 
BIT, it was shown in earlier publications (e.g. [S,9]) that it is sufficient to consider the 
heat flux q as additional variables besides the cIassical variable T .  However. Cattaneo’s 
model is too crude to study some subtle phenomena like propagation of heat waves in 
dielectric crystals at low temperature (e.g. [Z]). Therefore, the common approach consists 
of complementing the pair variables T and q by an additional one, say Q, representing the 
flux of the heat flux: since q is a vector, Q represents necessarily a tensor of rank 2. The 
new variable Q is however of different nature compared to T and q: indeed T and q appear 
explicitly in the ordinary balance laws (like the energy balance) while Q does not figure in 
the usual balance equations. Moreover. Q is not directly experimentally measurable. For 
this reason, Q will be referred to as an internal variable because it is not controllable from 
the external world [19-211. The variable Q is comparable to the convolution tensor widely 
introduced in rheology [22] to describe the geometric configuration of the polymer chains. 
It is interesting to note that, in their description of heat waves in dielectric crystals at low 
temperature, Guyer and Krumhansl [I71 also use internal variables to describe the deviations 
from equilibrium of the distribution function of phonons. By comparison with the kinetic 
theory, it is shown [2,3] that Q is related to the fourth moment of the non-equilibrium 
distribution with respect to velocity. 

In addition, in some physical systems with strong inhomogeneities like interfaces, and 
processes like light and neutron scattering in liquids and gases, non-local effects play a 
decisive role. To include these effects, it is necessary to refine the model by introducing 
non-local integral operators. For the present purpose, it is however sufficient to introduce 
weak non-locality with respect to the ‘external’ variables T and q. 
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By comparison with Cattaneo’s description [ 161, two supplementary ingredients are 
supplied by the present model. 

First, in additmn to the ‘external’ variables T and q, we introduce an extra variable Q, 
which will be identified as an internal variable whose physical meaning is that of a flux of 
*e heat flux. Within the kinetictheory description of dilute gases, T is interpreted as the 
kinetic energy moment, q as the flux of energy moment and Q as the next higher-order 
moment; designating by f the distribution function and by Ci the relative speed of the 
particles with respect to the barycentric velocity, one has 

$kT = C 2 f  d c  qi = 1 C2C, dc Q i j  = 1 C2CiCj f dc (3) J 
where C2 stands for C ~ C I .  Einstein summation convention rule and Cartesian coordinates 
will be used throughout this work. It follows direction from (3c) that Qij is a symmetric 
tensor. 

The second difference with Cattaneo’s approach is non-locality: it is admitted that 
the constitutive equation may depend on VT and Vq (weak non-locality); higher-order 
derivatives with respect to the space coordinates are neglected. It should however be kept 
in mind that VT and Vq are not considered as independent and supplementary variables. 
The set of independent variables is formed by T ,  q and Q whose behaviour in the course 
of time has to be described by means of evolution equations; no evolution equations will be 
formulated for the quantities V T  and Vq in contrast  with the approach’ adopted by some 
authors [23,24]. 

Since Qjj is a symmetric tensor, we may decompose it into a bulk and a deviatoric part 
according to 

Q i j  = 4 Qkksi, + &j )  (4) 

wherein brackets means a symmetric and traceless tensor: 

Q ( i j )  Qij  - f Q d i j .  

In the following, for the sake of generality, we shall consider Qcij,  and Qtt as independent 
variables. 

2. The relevant equations 

Let us now write down the evolution equations governing heat conduction in non-deformable 
isotropic bodies. We assume that the ‘external’ variables T and p have the so-called 
conservative form 

4 = -v. 4? +uQ (5) 

involving the divergence of a flux -3 plus a dissipative contribution U & ;  $J stands for T and 
q respectively. 

The evolution equation for the absolute temperature T is given by the balance of energy 

U = -qj j (6) 
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wherein U is the internal energy per unit volume, energy sources are assumed to be absent. 
Energy is conserved because it is well known from phonon hydrodynamics that interactions 
of phonons with the lattice imperfections and the boundaries conserve energy but not 
necessarily momentum [Z]. 

The second variable q satisfies the evolution equation 

i - - Q . .  . f 0 
I - 2J.J ui 

wherein urf' is a dissipative term to be given by a constitutive equation. However, since 
Q ( i j )  and Qkk are considered as independent variables, the above relation lacks generality 
and will therefore be replaced by the more general expression 

4 I -  - -c*Q(ij),j - :D*Qkk,i  +a/ (7 ) 

where C* and D* are arbitrary dimensionless coefficients, which may depend on the 
temperature. 

The next task is to formulate evolution equations for the bulk Qkh and the deviatoric 
tensor Q ( i j ) :  it  is assumed that their structure is no longer conservative but that they satisfy 
relations of the form 

Q wherein ucij) and U Q  are the source terms to be given by constitutive equations. For 
simplicity we have used the notation 

Q = 4 Q k k .  

Equations (8) and (9) do not contain a divergence term because Q ( i j )  and Qkk have been 
identified as internal variables that cannot be controlled from the outside through the 
boundaries of the system. The set of relations ( 6 x 9 )  wil!  be^ closed by appealing to 
constitutive relations for U ,  U:, a& and uQ. These quantities will generally depend on the 
whole set of variables ( T ,  q. Q) and the gradients of T and q. unless in contradiction with 
the general laws of thermodynamics. In the remainder of this paper, it is assumed that U!, 

u(ij) and ua are linear functions of qi, Qci j ) .  Q ,  TJ and q i , j .  Under this restriction, the Q 
most general expressions of U:, uij Q and aQ are given by 

g? = -a*gi - b*T. .L 

U W )  - - -A*Q(..  ' J )  - B*q(i, j)  

a' = -CY*Q - 8 ' q k . k  

(10) 

(11) 

(12) 

wherein all the coefficients with an asterisk may depend on the temperature; the expression 
of the internal energy need not to be specified at the present stage of the analysis. In a local 
theory all the terms involving and q i , j  should be dropped in (lO)<lZ). After substitution 
of the constitutive relations (lot12 in the evolution equations (7)-(9), one is led to 

(13) 4. - C * Q ( . .  . - D'Q ., . - a*qi - b*Ti 
1 -  8J )d  

Q(.. V )  - - -A*Q(i j )  - B*q(i,j) (14) 

Q = -  a*Q - B * q k . k -  (15) 
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For convenience, the following notation is introduced 

- A  b' D* 
a* a* 

1 - = r3 

_ -  - d  _ -  C 
C' 
a* 

B" 

- =  1 
a* 

1 

- =  

- =  B" 5 - 
- = "  A* A*='  a* a' 

By setting c = 0 and d = 0 in (17) one recovers Catkneo's equation (2). If in addition 
in (17) we put rI = 0 but h finite, one obtains Fourier's law (1) and this result allows 
us to identify the coefficient h with the heat conductivity. It is interesting to observe that 
equations (18) and (19) have the same structure as the Maxwell equation of rheology if we 
replace q;,j by the velocity gradient tensor and Qij by the stress tensor respectively. The 
quantities r,, s2 and r3 have the dimensions of time and will be called relaxation times, 
although at the present stage of the analysis, we have not proven that they are positive. 
Relations (17)-(19) coupled to the energy balance (6) are the basic relations of our model. 

In the particular case of very slow variations of Qcij, and Q in the course of time 
(rzQ(;j) = s36 = 0) one obtains by substituting in (17) the expressions of Q(ij) and Q 
drawn respectively from (18) and (19), 

ri4i +qi + h ~ i  = +q(qi.jj + yqj.ji) (20) 

with 

Y = 2(d5 + c7/6)lcrl. 

Expression (20) can be identified with Guyer and Krumhansl's equation [17] 

(21) TR4i+qi+hTi = f s R r " C ~ ( q i , j j f 2 4 j , j i )  2 

where c, is the velocity of sound under conditions to make the following identification: 

r, = rR cq = 2rRrNc:/5 y = 2. (22) 

l / r ~  is a measure of the frequency of the resistive processes while 1 1 ~ ~  is related to the 
frequency of the normal processes where phonon momentum is conserved. 

In passing it should be noticed that Guyer and Krumhansl's equation (20) can directly 
be derived by utilizing only qi as extra variable and by introducing non-locality. Indeed the 
most general evolution equation for qi can be written'as 
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with JiJ a flux term and uf a source term. Assuming that Jj; and U: are h e a r  in 4;. q;,j 
and T,; one obtains 

J.. - -C*q. . - D*qk kS 

U; = -a*qi - b"T; 

V - L J  . V 

'I 

wherein all the coefficients may depend on the temperature. Substituting the above 
expressions in (23), using the same notation as in (16) and omitting non-linear terms in 
T,jqi.,j, it is found that 

sqi + 4i + ATi = ;ctqi.;j + (2dlc)q;.jil 

which is clearly of the Guyer-Krumhansl type. 
Going back to the set (17)-(19), let q; and Qj; tend to zero. It i s  then found that the 

gradient of temperature is zero while the energy balance (6) implies that aT/at = 0; it is 
thus clear that q; = Q;; = 0 comesponds to the equilibrium state. 

Up to now no restriction has been imposed either on the form of equations (17t(19), 
or on the sign of the various coefficients. More information about the properties of these 
coefficients will be gained from thermodynamics and more particularly from the second law 
and the general property that the equilibrium state (qi = Qzj  = 0) is stable. In order to 
explore the thermodynamic consequences, we have to introduce a non-equilibrium entropy 
per unit volume. It is supposed that such a potential function s exists with the following 
properties: 

(i) s is given by a constitutive relation depending on the whole set of variables, 
(ii) s is a convex function with a maximum value at equilibrium, and 
(iii) s obeys an evolution equation of the form 

j. = -J!. 2.L +g'* (24) 

with Jf the entropy flux vector and U' the entropy production, which according to the 
second law of thermodynamics is non-negative: 

6" 2 0. (25) 

3. Restrictions imposed by thermodynamics 

We now explore the constraints placed by the property U? 2 0. Since T is selected as 
independent variable, it is indicated to work with the Helmholtz free energy f = U - Ts  
as basic function. In terms of f, the entropy balance (24) can be written as 

T U I  = U - f - ST + TJ;; 2 o (26) 

where f and J;' are a priori functions of the whole set T ,  4;. e([;,, Q. Concerning the 
expression of .I;' we shall assume that it takes the form 

Jf = ( l /T )q i  + bQ(i;)qj + B'Qqi (27) 
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wherein ,3 and p' are undetermined coefficients that are allowed to depend on the 
temperature. For Q(ij) = Q = 0, one recovers the classical results q; /T  as one should. 

Applying the differentiation rule to calculate f and making use of the evolution 
equations (6) and (17F(19), relation (26) may be written, up to second-order terms in 
the fluxes and their derivatives, as 

+ T(BQ(rj!.iqj + bQ(ij)q(j,i! + B'Q,iqi + B'Q4i.i) > 0. (28) 

In (28). third- and higher-order terms involving the products of the fluxes and the gradients 
of the variables have been omitted. Inequality (28), which is linear in the quantity T, could 
be violated except if 

af /aT+-S=o.  (2% 

With this result in mind, expression (28) takes the form 

Positiveness of expression (30) requires that all the terms in parentheses must vanish. It 
follows that 

while ,3 and B' are related to~the quantities c, d and A by 

p = -~ c/AT2 B' = -d/AT2. (32) 

Making use of the results (29), (31) and (32), the differential form of f is given by 

This relation is usually called the generalized Gibbs equation. In the particular case that c 
and d are zero, the entropy flux and the Gibbs relation are simply 

1 rl J? = -q. d f = --s dT + -qi dqi ' T '  AT 

in agreement with earlier developments of extended irreversible thermodynamics [SI. 
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Making use of the results (31) and (32), expression (30) of TU' simplifies as 

from which it follows that 

A > O  c/q > 0 d/S >O. (35) 

After expanding f around its equilibrium value f q ( T )  and taking into account that fEq 
is extremum at equilibrium (qj = Q ( j j )  = Q = 0), it is found from (31) that 

Since f is minimum at equilibrium, one has 

In virtue of the results (35). it can be concluded from (37) that the three relaxation times 
are positive, namely 

r, > 0 r2 > 0 > 0. (38) 

4. Onsager relations 

In classical irreversible thermodynamics [4-71, the evolution equations of the state variables 
am can be given the general form 

where a' is the thermodynamic flux, af/aaP the thermodynamic force, and L@ the 
phenomenological coefficient. The latter obeys the relation 

L@ = &Lfl* (40) 

wherein the sign + (respectively -) refers to state variables aa and a0 with the same 
(respectively different) parity under time reversal. Expressions (40) are the celebrated 
Onsager-Casimir reciprocal relations. 

It may be asked whether the Onsager-Casimir relations remain satisfied when the 
classical evolution equations (39) are replaced by more complicated equations like (17)-(19). 
Making use of the results (31) and (33), we can reformulate the evolution equations (17)- 
(19) as 
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These equations may formally be cast in the form 

where u' stands for qi.  Qci j ,  and Q respectively. It is directly checked from (41)-(43) that 

MqQ = MQq A ~ T / Z , Q  (45) 

Mqe = M@' = A < T / z ~ T ,  (46) 

or more generally 

Map = MBU, (47) 

The reciprocity relations (47) may be considered as generalizations of the Onsager-Casimir 
relations. The main difference is that the results (47) are derived on purely macroscopic 
grounds while Onsager-Casimir's original relations could only be obtained by invoking 
supplementary hypotheses like time-reversal symmetry of equilibrium correlation functions 
and linear regression of fluctuations. 

It is worth noticing that the argument leading to the symmetry of the coefficients Map 
parallels the demonstration given by Onsager himself, who postulated that the fluxes are the 
time derivatives of the state variables while the forces are the derivatives of a thermodynamic 
potential with respect to the state variables. These precepts are observed in (41)-(43) 
wherein the 'fluxes' are the time derivatives of the basic variables q, Q and Q while the 
forces are the gradients of the derivatives of f with respect to q, Q and Q respectively; it 
is rather natural that the gradients appear in our analysis as we are dealing with a non-local 
theory. 

There is however one important difference with Onsager-Casimir's results: it  concerns 
the change of sign. Indeed the quantities q and Q have opposite parities under time 
reversal as Q arises from a higher-order moment with respect to molecular velocity than 
q. Therefore, one should expect skew symmetry according to Onsager-Casimir's rules. 
But instead it is seen that relations (41)-(43) exhibit symmetry properties. The above 
observations seem to indicate that, under time reversal, microscopic reversibility requires 
not only that the sign of the time be reversed but also that of operator nabla: V + -V. 
This result was justified among others by Vasconcellos et ul [26] on the basis of microscopic 
arguments. 

5. The temperature equation 

From a practical point of view, equations (17)-(19) coupled to the energy balance (6) are not 
easily tractable as they involve quantities like Q and Qcij,, which aie not directly accessible 
by experimental devices. In the present section, we shall eliminate these higher-order fluxes 
as well a s ~ t h e  heat flux vector by combining (6) and (17)+9): the outcoming result will 
be a partial differential equation for the temperature. The present analysis will be restricted 
to a first-order approximation with all the coefficients appearing in the evolution equations 
assumed to be constant. Under this hypothesis, the energy balance law can be written as 

c,T = -qi,, (48) 
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wherein c, is the heat capacity per unit volume. For simplicity, it is also supposed that the 
variable Qij is traceless (Q = 0) and the coefficient 5 of equation (19) is zero. 

We first eliminate Qij between expressions (17) and (18). This operation leads to the 
following expression for the heat flux vector: 

rlrzqi = - s q i  - qc - ?.Ti + qc.qi,jj - ~ ( q i  +?.Ti). (49) 

The next step consists of eliminating qi between (48) and (49): the final result is 

r,r2T + (r1 + r2)T + 1: - (ez + r 2 x ) f i i  = xrii (50) 

wherein e2 (= c,q) measures the effects of the spatial inhomogeneities while x (= 
A/cJ stands for the heat diffusivity. Expression (50) is similar to the temperature 
equation obtained by Gurtin and Pipkin [27] who worked in the framework of rational 
thermodynamics [15] with an internal energy U and a heat flux vector given by 

(51) 

Here uo is a constant and F ( s )  and Q(s) are exponential memory kernels: 

W) = F(O)exp(-s/rd QW = Q(o)exp(-s/q) (53) 

where r, and sZ are relaxation times. It was proved [1,26] that the differential equation (50) 
is hyperbolic, thus allowing for propagation of signals at finite speed. 

By setting the relaxation time q equal to zero in (50), one obtains 

rI T + T - ezTii = xTii  (54) 

which is an equation of the Jeffreys type [ 11. Equation (54) is parabolic and does not permit 
transmission of waves except if E2 vanishes. But setting e2 = 0 amounts to smoothing out 
non-local effects in expression (54), which reduces to the well known telegraphist equation 

r l T + T = x T , .  (55) 

6. Wave propagation 

For simplicity, we consider a one-dimensional problem with heat propagating along the x 
axis; the viscometric coefficients K ,  e and the relaxation times are assumed constants. We 
seek solutions of the form 
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with k = k'+ ik" the complex wavenumber and w the frequency. After substitution of (56) 
in the evolution equations (17), (18) and (48), one obtains the following dispersion relation 
between w and k 

wherein as above e2 = cq. 
For e = 0 and within the limit 71 = r2 = 0, relation (57) can be written simply as 

(58) 2 - io = Kk . 

The phase velocity uph is easily derived and given by 

As expected, uph tends to infinity for w = CO as (58) describes a pure.diffusion process. 
Assuming at present that e # 0, rI # 0 but 72 is negligibly small. As shown in 

section 2, these assumptions correspond to Guyer-Krumhansl's model. The phase velocity 
is now expressed by 

wherein A and B stand respectively for A = 1 +wZe4/x2, B = 1 + rlwzL2/X. In the limit 
of high frequencies, one has B I A  Y r l ~ / e ~  and it is checked that expression (60) reduces 
to 

which exhibits the property that uph grows indefinitely as w is  increased.^ This is not 
surprising because, as mentioned earlier, Guyer-Krumhansl's formalism leads to a diffusion 
equation of the Jeffreys type. 

If in expression (57). we set r2 = 0 and e = 0, which amounts to ignoring non-local 
effects, it is found that 

which is the result that one would have obtained directly from Cattaneo's equation (20). At 
high values of rjw, expression (62) becomes 

and this regime is usually referred to as the second sound. It thus describes heat propagation 
in crystals for which rjw is large and e -+ 0; according to (21) this corresponds to a 
regime where the frequencies l/rl of the resistive phonon interactions, i.e. non-preserving 
momentum collisions, is low. These conditions are met in crystals like NaF, Bi, Lif, . . . 
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whose temperature is sufficiently high (larger than 12 K) [28,29],to favour phonon-phonon 
interactions but at the same time the crystals must be pure enough to reduce the resistance. 

Since in dielectric crystals at low temperature heat diffusivity is related to the relaxation 
time rR by [2, 17,251 

where c, is sound velocity, it is inferred from (63) that the second sound waves have a 
velocity given by 

UPh = c,/& 

which is in satisfactory  agreement^ with experimental results [28,29]. 

The dispersion relation (57) reduces to 
A last case of interest is that for which rl and r2 are very large (UTI >> 1, os2 > 1). 

from which it follows that 

This situation is more typical of ballistic phonons, i.e. phonons that travel through the 
crystal without interaction. Ballistic phonons are observed in pure crystals at sufliciently 
low temperature (below 15 K in NaF) and are characterized by vanishing frequencies 
of both resistive and conserving momentum collisions. Using the result (64) and the 
experimental evidence that ballistic phonons travel with the sound velocity, it is inferred 
from equation (67) that uph = cs is satisfied under the condition 

Such a result is interesting as it provides an asymptotic relation between the phenomeno- 
logical coefficients e ,  rI and r2. 

7. Summary  a n d  final comments 

Propagation of second sound in dielectric crystals can be described in the framework of 
extended irreversible thermodynamics. This is achieved in the present work by selecting as 
basic variables the temperature T, the heat flux vector q and the flux of the heat flux Q. To 
include (weak) non-local effects, the constitutive equations have been assumed to depend 
in addition on the gradients of the temperature and the heat Rux; the gradient of the flux of 
the heat flux has not been taken into account because it would correspond to higher-order 
non-local effects. 

The main results that have been obtained can be summarized as follows. 



(i) Evolution equations for the fluxes q and Q are proposed: the equation for the heat 
flux vector q generalizes Cattaneo’s relation while the evolution equations for the deviatoric 
(Q) and bulk parts of Q are of the Maxwell type. The corresponding relaxation times are 
proved to be positive as a consequence of the minimum property of the Helmholtz free 
energy at equilibrium. 

For very slow variations of (Q) in the course of time, one recovers the celebrated 
equation of Guyer and Krumhansl. However. these authors established their results on a 
completely different approach based on an analysis of Boltzmann’s equation for a phonon 
gas. 

(ii) The entropy flux J‘ is no longer given by its classical expression q / T  but contains 
supplementary contributions arising from the coupling of the variables Q and q, namely 

Js = U / U q + B ( Q ) - q + B ’ Q q .  (69) 

Restrictions derived from the positiveness of the entropy production allows us to express 
the coefficients !3 and’,¶’ in terms of the other coefficients appearing in the evolution 
equations: in particular, it was shown (see equation (32)) that 0 and p‘ are proportional to 
the coefficients c and d respectively, which means that the presence of extra terms in (69) 
results essentially from non-locality. 

(iii) As expected, Gibbs equation contains extra terms compared to the classical 
expression proposed in the frame of classical irreversible thermodynamics. It is worth 
stressing that the coefficients of the supplementary terms are not arbitrary but have been 
expressed in terms of known quantities like the relaxation times and the heat conductivity. 

There is however a 
difference with the reciprocity relations of classical irreveisible thermodynamics: indeed, 
the phenomenological coefficients are symmetric when they connect two processes with 
the same parity under time reversal and skew symmetric for processes of different 
parities. Here it was found that the coefficients are symmetric for processes with different 
parities. However, these results are not in contradiction with Onsager-Casimir’s because 
we are working in a different context. Indeed in Onsager-Casimir’s approach, the 
phenomenological coefficients relate fluxes am with forces of the form af/aan while in 
the present analysis the forces are expressed in terms of the gradient of af/aaa. 

(v) In the linear approximation, it is an easy task to eliminate the variables q and Q 
and to obtain a single equation involving only the temperature as variable. The relevant 
equation is a partial differential hyperbolic equation allowing for the propagation of waves 
with finite speed and containing the telegraph equation as a particular case. 

(vi) Finally one has calculated the phase velocities corresponding to different transports 
of energy in a phonon gas. These are useful as they relate accessible experimental data, like 
phase velocities, to the various parameters appearing in the phenomenological description. 

Of course,-it must be realized that the model presented here provides only partial 
information as it contains a limited number of variables, 10 in total. Formally, there would 
be no difficulty to introduce more variables like higher-order fluxes but this would unduly 
complicate the formalism and generate more and more unknown coefficients whose physical 
meaning would be difficult to interpret. 

(iv) Onsager-Casimir’s reciprocal relations .are displayed. 
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